The effect of uniaxial strain on graphene nanoribbon carrier statistic

نویسندگان

  • Zaharah Johari
  • Razali Ismail
چکیده

: Armchair graphene nanoribbon (AGNR) for n=3m and n=3m+1 family carrier statistic under uniaxial strain is studied by means of an analytical model based on tight binding approximation. The uniaxial strain of AGNR carrier statistic models includes the density of state, carrier concentration, and carrier velocity. From the simulation, it is found that AGNR carrier concentration has not been influenced by the uniaxial strain at low normalized Fermi energy for n=3m and n=3m+1. In addition, the carrier velocity of AGNR is mostly affected by strain at high concentration of n≈3.0×107 and 1.0 × 107 m-1 for n=3m and n=3m+1, respectively. The result obtained gives physical insight into the understanding of uniaxial strain in AGNR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational study of bandgap-engineered Graphene nano ribbon tunneling field-effect transistor (BE-GNR-TFET)

By applying tensile local uniaxial strain on 5 nm of drain region and compressive local uniaxial strain on 2.5 nm of source and 2.5 nm of channel regions of graphene nanoribbon tunneling field-effect transistor (GNR-TFET), we propose a new bandgap-engineered (BE) GNR-TFET. Simulation of the suggested device is done based on non-equilibrium Green’s function (NEGF) method by a mode-space approach...

متن کامل

Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field-effect transistors

: The effects of uniaxial tensile strain on the ultimate performance of a dual-gated graphene nanoribbon field-effect transistor (GNR-FET) are studied using a fully analytical model based on effective mass approximation and semiclassical ballistic transport. The model incorporates the effects of edge bond relaxation and third nearest neighbor (3NN) interaction. To calculate the performance metr...

متن کامل

Effects of Strain on Notched Zigzag Graphene Nanoribbons

The combined effects of an asymmetric (square or V-shaped) notch and uniaxial strain are studied in a zigzag graphene nanoribbon (ZGNR) device using a generalized tight-binding model. The spin-polarization and conductance-gap properties, calculated within the Landauer–Büttiker formalism, were found to be tunable for uniaxial strain along the ribbon-length and ribbon-width for an ideal ZGNR and ...

متن کامل

Effect of Nanoribbon Width and Strain on the Electronic Properties of the WS2 Nanoribbon

Materials of the general form MX2 (transition metal dichalcogenides) have generated a lot of interest recently. They can form nanoribbons like graphene and such nanoribbons have versatile electronic structures and can be metallic or semiconducting by changing the edges of the ribbon. The electronic properties of such materials are not fully understood till now. In this paper we investigate one ...

متن کامل

Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension

Atomistic simulations are performed to study the nonlinear mechanical behavior of graphene nanoribbons under quasistatic uniaxial tension, emphasizing the effects of edge structures (armchair and zigzag, without and with hydrogen passivation) on elastic modulus and fracture strength. The numerical results are analyzed within a theoretical model of thermodynamics, which enables determination of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013